November 15, 2010

Rasio Kompresi dan Tenaga !!!

APA ITU RASIO KOMPRESI?
Para engineer atau tuner kerap memfokus diri dalam tuning mesin 4 tak menuju langsung pada cylinder head. Salah satunya adalah, ruang bakar, atau bahasa jawanya combustion chamber :)
So… apa kaitan ruang bakar dengan tenaga? Oh pasti ada… besaran ruang bakar ini nantinya akan sangat menentukan dalam tugas menampung emulsi udara-bahan bakar yang sudah dihisap oleh piston kemudian dipadatkan di kubah ini sebelum akhirnya diledakkan busi.
pernah dengar orang berkomentar tenaga mesinnya semakin padat…? Yup, bisa jadi karena memang combustion chamber dapat dimanfaatkan dengan optimal. Kubah ruang bakar  tentu memiliki volume sendiri, sedangkan kapasitas mesin merupakan volume pembanding. Seberapa banyak volume kapasitas mesin mampu dipadatkan di ruang bakar hingga seper-sekian bagian inilah yang disebut rasio kompresi.
Contoh sebuah mesin bebek dengan kapasitas mesin 100 cc, sedangkan volume ruang bakar adalah 10 cc dimasukkan dalam rumusan rasio kompresi adalah
(Kapasitas mesin / Volume ruang bakar ) + 1
= (100 / 10 ) + 1
= 10 + 1
= 11 : 1
Yahhh itu mah rumus sederhana aja, kalo mau rumus ribet coba cari di wikipedia, kompresi rasio dihitung pake rumus…
\mbox{CR} = \frac { \tfrac{\pi}{4} b^2 s + V_c } {V_c}, dimana
b = diameter piston
s = panjang stroke
Vc = volume ruang bakar + volume paking cylinder head.
Ini adalah rumusan minimum, kalau mau lebih detail sebenarnya volume pembanding tidak hanya ruang bakar, melainkan juga : Cylinder Head Combustion Chamber, Tebal Gasket, Deck Clearance, Ring Kompresi terhadap Piston, Dan Dome Piston. Huahahahaha… Ini nih kepusingan berawal :)
Mau dihitung satu-satu? Capee… deh, coba bayangin kita pakai piston Izumi high dome dengan coakan klep dalem, hitung berapa volume jenong pistonnya…? Mending ngisep rokok sambil ngopi daripada botak mikir itu hehehehe…
Saya bilang teknik menghitung seperti wikipedia yang ribetz ni ga selamanya efektif, bagaimana jika piston memiliki permukaan highdome, ada yang bisa menghitung volumenya, yah… walaupun bisa tapi kok ya menyusahkan diri sendiri seandainya piston seperti foto dibawah ini
Jaahhh… bikin males belajar matematika tu ya gara2 rumus ribet ini. Mending ketika blok dan cylinder head terpasang, posisikan piston pada TMA, lepas lubang busi kemudian suntikkan cairan untuk mengukur volume ruang bakar. Inilah rumus ruang bakar riil dibandingkan yang harus mengukur dan menghitung satu per satu.
Ngomong-ngomong dah pada bisa nge-hitung volume kapasitas mesin kan?
VOLUME MESIN = ( Phi * Bore * Bore * Stroke ) / 4,000
Phi adalah konstanta bernilai 3.1416
Bore adalah diameter lebar piston dalam satuan milimeter
Stroke adalah langkah piston bergerak dari TMA ke TMB dalam satuan milimeter
Volume mesin akan diperoleh dalam satuan centimeter cubic alias CC
Contoh, sebuah mesin dengan diameter piston 53.5mm, serta panjang langkah piston 54mm, akan memiliki Volume Silinder sebesar 121.4 CC
Nah setelah kapasitas mesin didapat, baru ukur volume kubah ruang bakar, finally diukur deh rasio kompresinya.
Mengejar Kompresi tinggi
Mengejar Rasio Kompresi tinggi
Ingat memang meningkatkan kompresi adalah sebuah cara paling efektif dan mudah untuk meningkatkan keluaran tenaga pada mesin naturally aspirated (non-Turbo). Namun, kita tentu saja tidak bisa langsung meningkatkan kompresi tanpa memikirkan batasan bahwa semakin tinggi nilai kompresi maka bahan bakar yang dibutuhkan mesin juga harus beroktan tinggi.
Jika kamu bisa memperoleh racing fuel, maka mainkan rasio kompresi hingga diatas 15 : 1, bahkan kamu bisa pakai rasio lebih tinggi jika memakai alcohol, ingat Drag NHRA yang mobil dragnya mirip formula, tuh semua pada pemabok heheheh.. kan mimik alkohol. Kumat ngelantur…
Papas noken as, timing dan durasi, airflow, volumetric efisiensi, aliran di porting, dan banyak kombinasi dari berbagai faktor berpengaruh besar terhadap kompresi dan sang maut yang mengancam nyawa mesin – DETONASI -
Detonasi
Dapat dipahami sebuah kondisi yang menyebabkan bahan bakar meledak – bukan terbakar dengan cepat – Parah! Biasa terjadi pada mesin dengan beban tinggi dan kecepatan tinggi, kerusakan detonasi bisa mengalahkan bearing-bearing seperti di kruk as yang jika sudah tidak balance bisa-bisa melintir tuh kruk as.
Kecepatan bahan bakar normal berada pada 23 – 56 meter tiap second. Semakin tinggi nilai oktan, semakin lambat kecepatan rambatnya. Sebuah percikan busi membutuhkan waktu 0.003 detik untuk melakukan sebuah pembakaran sempurna, jadi bisa menghitung kan berapa RPM batasan mesin biar gak Detonasi ^_^

PISTON VELOCITY

MODIFIKASI PISTON UNTUK BALAP
Rangkaian seher dan setang seher memiliki tugas untuk meneruskan dorongan yang diciptakan oleh ledakan hasil pembakaran ke big end di kruk as. Agar dapat bekerja dengan efisien, piston dan ring piston harus menyekat tekanan ruang bakar pada sisi atas, dibarengi dengan sebisa mungkin meminimumkan gesekan piston v.s liner boring.
Kemampuan ring piston menyekat kompresi tergantung dari beban oleh tekanan selama siklus kerja, terutama suhu tinggi serta tekanan dari ruang bakar saat proses langkah usaha. Tekanan di atas ring piston mencoba melesak melewati ring kompresi – BLOWBY – sementara oli mencoba menerobos lewat ring oli dan ring kompresi kedua.
PISTON RACING cuma punya dua ring
PISTON RACING
Semua ini terjadi saat mesin berakselerasi ataupun deselerasi, saat pendinginan waktu overlapping atau dalam suhu panas tinggi saat kompresi, bergesekan terus-menerus dengan dinding silinder. Integritas piston dan pemasangan connecting rod yang benar harus dipastikan agar semua ber-performa handal, oleh karena itu pemilihan komponen yang baik akan menentukan prestasi kerja mesin.
PISTON VELOCITY
Putaran mesin memang dibatasi oleh kemampuan per klep menjaga agar klep tidak floating, namun kecepatan piston melaju di dalam silinder juga patut diperhatikan. Terutama pada mesin balap yang cenderung bekerja di RPM selangit. RPM tinggi cenderung mengurangi usia pakai ring piston, keausan lebih cepat, ataupun kerusakan catastrophic dikarenakan beban dinamika piston selama dia naik-turun-naik-turun-putus-nyambung kaya lagunya BBB… lah… :p
Kecepatan gerak piston di dalam silinder bisa diukur dengan mengalikan Putaran mesin dengan panjang langkah piston alias stroke yang bukan penyakit itu. Hehehehe…
VELOCITY = ( ENGINE RPM x STROKE ) / 6
Dimana Velocity adalah kecepatan yang diukur dalam Feet Per Minutes
RPM adalah putaran mesin setiap menit
STROKE diukur dalam satuah inchi
Contoh, sebuah mesin dengan stroke sepanjang 62.2mm alias 2.43 inch, bekerja pada 12,000 RPM, maka piston velocity nya didapat 4,860 fpm. Mesin balap biasa berkinerja dengan piston velocity hingga 5,700 fpm.
Jika kadang-kadang kamu bertanya-tanya kok mobil balap seperti Formula 1 bisa bekerja hingga 17,000 RPM dengan santai tanpa takut mesin rompal meski putar-putar sirkuit berpuluh kali sampai kita ketiduran saat nonton. Selain sistem Pneumatic Valve yang sanggup meladeni putaran tinggi minus gejala floating, rahasianya adalah SHORT STROKE, meski bekerja pada RPM tinggi piston velocitynya tetap dibawah 5,000 fpm.
Lebih penting, saat piston deselerasi berarti kinerja piston sama dengan saat berakselerasi menuju maximum velocity hanya saja dalam arah yang berlawanan. Seandainya beban saat piston berakselerasi mencapai 2,000 gram, serta bobot seher adalah `150 gram, maka beban inersia sebesar 2,000g x 150g x 2.204 = 661,200 gram alias 661 kilogram. W + O + W = WOW! tinggal bagaimana setang piston dan kruk as mampu menerima beban sebesar itu.
PISTON VELOCITY DAN AKSELERASI
Maximum piston velocity terjadi saat connecting rod berada tegak lurus, atau membentuk 90 derajat terhadap ayunan bandul kruk as. Pada situasi ini, sudut lemparan kruk as biasanya mendekati 75 derajat dari TMA, tergantung panjang setang piston. Beban pada kruk as akan semakin besar jika setang piston semakin pendek dan membentuk sudut yang lebih kecil misal 70 derajat. Rasio panjang connecting rod yang ideal diterapkan untuk balap setidaknya harus 70% lebih panjang dari stroke, atau rasio 1.7 : 1 relatif terhadap rotasi kruk as.
Semoga bermanfaat :)
Piston dikorek biar enteng
Piston dikorek biar enteng

SUMBER : R.A.T MOTORSPORT

EFEK DARI MERUBAH DERAJAT NOKEN AS DAN LSA

EFEK DARI MERUBAH DERAJAT BUKA-TUTUP NOKEN AS DAN JARAK LSA Tabel dibawah ini sebagai ilustrasi bagamana variasi dapat dilakukan dalam menyeting LSA dan waktu buka-tutup klep akan memberi efek terhadap sifat mesin sebagai reaksi terhadap pemasangan noken as.
EFFECT DARI MENGGESER POSISI NOKEN AS
PEMAJUAN TIMING CAM
PEMUNDURAN TIMING CAM
Memulai proses hisap lebih cepat
Menahan proses hisap berakhir lebih lambat
Klep Inlet membuka lebih cepat
Tetap membuka klep inlet
Menambah torsi pada putaran bawah
Menambah lebih banyak tenaga RPM atas
Jarak klep in ke piston semakin dekat
Menambah jarak aman piston – Klep in
Menambah jarak klep buang ke piston Mengurangi Piston-Exhaust Valve Clearance
EFFECTS OF CHANGING LOBE SEPERATION ANGLE (LSA)
Tighten (smaller LSA number) Widen (larger LSA number)
Menggeser torsi ke RPM rendah
Mengembangkan torsi di RPM tinggi
Torsi maksimum meningkat Torsi maksimum menurun
Rentang tenaga sempit Rentang tenaga lebar
Tekanan dalam silinder meningkat Mengurangi Maximum Cylinder Pressure
Kemungkinan knocking tinggi Kemungkinan engine knock rendah
Meningkatkan tendangan balik kruk as
Mengurangi tendangan balik kruk as
Meningkatkan Kompresi efektif Menurunkan Effective Compression
Kevakuman saat stasioner berkurang
Stasioner nyaman
Kualitas stasioner buruk
Kualitas saat stasioner membaik
Overlaping meningkat
Overlaping kecil
Proses Kompresi dan usaha lebih lama
Saat klep menutup bersamaan lebih sedikit
CAMSHAFT GEOGRAPHY AND LOBE FUNCTION
1) Max Lift or Nose Lobe Separation Diagram
2) Flank
3) Opening Clearance Ramp
4) Closing Clearance Ramp
5) Base Circle
6) Exhaust Opening Timing Figure
7) Exhaust Closing Timing Figure
8) Intake Opening Timing Figure
9) Intake Closing Timing Figure
10) Intake to Exhaust Lobe Separation
SUMBER : R.A.T MOTORSPORT

Sistem Pengapian

The Ignition System

Sistem pengapian adalah salah satu hal yang kudu lebih diperhatikan dalam hal engine tuning. Kebanyakan orang mengira ketika mereka selesai memodifikasi, yang diperlukan hanyalah memajukan atau memundurkan timing pengapian. Tidak cukup itu saja. Satu, percikan api harus menyala cukup kuat untuk membakar udara/bahan-bakar. Mungkin kebanyakan bilang, ya udah pasti lah!! Tapi apakah kalian tahu bahwa molekul udara bersifat insulator? Dan ketika kamu memodifikasi mesin, merubah porting, memodifikasi camshaft, memasang karburator besar, semakin banyak udara dilesakkan ke dalam silinder, maka percikan api dari koil standard tidak akan pernah cukup menyalakan campuran udara/bahan-bakar di ruang padat kompresi.
Fakta, lemahnya kualitas nyala busi memberi efek negatif kepada mesin sebagaimana timing pengapian yang kurang tepat. Tambahan, sebuah campuran basah ( 11 udara : 1 bahan bakar ) , lebih bersifat konduktif terhadap pengapian.
Sekali campuran udara/bahan-bakar dinyalakan, kecepatan lidah api merambat pada kubah ruang bakar menjadi penting jika kamu ingin melepaskan tenaga maksimal pada mesin. Jika api merambat terlalu cepat, akan ada beban berat yang menahan piston, setang dan bearing kruk as ; sebaliknya, jika api merambat perlahan, tidak cukup ledakan dihasilkan untuk menghasilkan tenaga besar ke roda.
Tiga hal penting yang mempengaruhi kecepatan rambat api dalam membakar campuran udara/bahan-bakar dan kekuatan ledak di ruang bakar :
  1. KUALITAS CAMPURAN UDARA/ BAHAN-BAKAR
  2. PERGERAKAN / TURBULENSI CAMPURAN UDARA/BAHAN-BAKAR DI DALAM COMBUSTION CHAMBER
  3. DESAIN DARI KUBAH RUANG BAKAR YANG BAIK
CAPACITOR DISCHARGE INGNITION
Disingkat CDI, inilah perangkat pengapian paling digembar-gemborkan. Padahal fungsinya sederhana, menempatkan waktu ledak busi di ruang bakar pada saat yang tepat seiring pergerakan piston. Timing (tempo) pengapian, kurva, derajat, adalah bahasa-bahasa umum untuk membahas CDI.
CDI VORTEX
CDI VORTEX
Capacitor discharge ignition sistem menyimpan energi di dalam kapasitor lebih banyak daripada dalam koil. CDI memang masih membutuhkan koil, namun koil hanya sebatas digunakan untuk transformasi pulsa agar tegangan meningkat dengan cepat. Olehkarenanya CDI modern seperti milik BRT tidak membutuhkan koil racing, cukup koil bawaan pabrikan sudah mampu memberi efek signifikan. Begitu pula penggantian CDI pada motor modern akan lebih terasa, dibanding hanya sekedar mengganti KOIL.
Dalam sistem CDI, circuit tenaga utama adalah sebuah oscilator mini yang mengisi kapasitor hingga 600 volt dan menunggu kontak pick up dan pulser memicu sistem. Ini disebut Magnetic Trigering System. Ketika sinyal dipicu, kapasitor akan menghantarkan energi ke kumparan primer pada koil. Koil bertindak sebagai perubah pulsa dan meninggikan tegangan dari kapasitor hingga menjadi 40.000 volt yang dibutuhkan untuk menciptakan loncatan bunga api sejauh kurang dari 1mm di dalam ruang bakar yang terkompresi.
Keunggulan dan Kekurangan
CDI memiliki banyak keunggulan utamanya dalam menghasilkan tegangan yang cepat membesar. Kenyataanya, kecepatan ini hanya membutuhkan waktu 0,002 detik untuk memenuhi tegangan kapasitor. Secara teoritis, CDI harus dalam kondisi bagus untuk menyajikan bunga api berkualitas terus menerus hingga lebih dari 10.000 kali per menit. Tapi, CDI hanya menyajikan bunga api dalam waktu pendek dan bergantung kekuatan pemicu bunga  api.
CDI RACING
CDI RACING
BUSI
Sisi penting dari busi adalah pemilihan rentang panas, menggambarkan kemampuan busi melepas panas dari pusat elektroda. Busi dengan elektroda pendek adalah busi dingin, karena panas hanya memiliki jarak yang pendek untuk melepas panas dari dalam mesin ke udara bebas.
Apa yang membuat Heat Range penting adalah kehandalan dan daya tahan dari busi. Busi yang terlalu panas akan mudah fraktur (retak)  karena panas berlebih, dan akan menjadi titik didih di ruang bakar sebagai sumber detonasi (ngelitik). Tapi, panas tetap diperlukan oleh busi untuk mencegah dari menumpuknya arang yang akan membuat umur busi pendek. Busi dingin akan penuh deposit karbon bila dipasang pada mesin standard, dan akan menjadi tidak efektif serta berumur singkat.
Foto(60)
MEMILIH BUSI YANG TEPAT
Perlu disadari bahwa, mengemudi dalam kondisi berbeda, dengan temperatur berbeda akan membutuhkan busi yang berbeda pula. Untuk mesin balap, pemakaian extreme, maka busi terbaik yang pernah ada harus menancap di mesin mu.
BUSI TRANSPARAN :: RAT MOTORS ::
Setelah melakukan set up, coba cek kondisi busi dan kode pembacaan busi. Inspeksi jika busi  terdapat endapan hitam yang basah, maka busi terlalu dingin. Bagaimanapun, kehitaman dapat juga mengindikasikan set up karburator yang terlalu basah. Dan jika endapan itu berminyak, ada kebocoran oli ke ruang bakar yang patut diwaspadai. Jika pusat elektroda terlalu putih, maka busi terlalu panas. Bisa juga pemajuan pengapian terlalu jauh. Atau ukuran main jet pada karburator kurang pas. Jika busi sudah mengendap keabu-abuan atau kecoklatan maka itulah setingan terbaik yang bisa kita dapatkan.
Tentu saja, busi terlalu panas, harus kita ganti dengan menaikkan 1 angka kode busi, begitu pula sebaliknya. Lapanpun kamu mengganti busi dengan kode panas yang berbeda, lakukan terlebih dahulu pengetesan agar kamu memperoleh angka busi yang tepat.

ISTILAH DASAR MESIN

ISTILAH DASAR MESIN
1.    SIKLUS
Untuk menciptakan performa mesin, piston harus terus bergerak naik-turun, memasukkan campuran bahan-bakar dan udara, mengompresikannya, menerima ledakan dan mendorong gas sisa pembakaran dalam kehidupannya. Dalam setiap tahap itulah yang dinamakan siklus.
Mesin 4 langkah memerlukan 4 kali piston bergerak dari TMB – TMA ( 2 kali putaran kruk as ) sedangkan mesin 2 langkah hanya memerlukan separuh dari kinerja mesin 4 langkah.
SIKLUS MESIN 4 LANGKAH
2.    LANGKAH
Momentum piston bertranslasi dari TMB – TMA, gerak tunggal piston dinamakan langkah, atau lebih mudahnya adalah jarak antar titik henti piston dalam silinder diukur dalam satuan millimeter (mm)
STROKE UP
3.    TITIK MATI ATAS (TMA) TITIK MATI BAWAH (TMB)
Adalah titik henti piston, batas atas maupun batas bawah, TMA adalah poin dimana piston mulai bergerak ke bawah, TMB sebaliknya adalah titik piston mulai bergerak ke atas.
4.    BORE
Istilah untuk menyatakan besaran diameter dalam lubang silinder.
5.    CRANK ANGLE
Derajat kruk as yang dibentuk oleh garis sumbu dari engkol dan garis yang ditarik dari pen ke pusat engkol dengan koefisien pada TMA – TMB.
6.    DISPLACEMENT
Ketika piston bergerak dari atas (TMA) turun kebawah (TMB) ada isi yang dihisap oleh piston, Piston Displacement, disebut juga volume langkah dapat dihitung melalui rumus :
V
V = volume
= Konstanta 3,1416
r =  Separuh diameter bore
L = Panjang stroke (langkah)
N = Jumlah silinder
rasio kompresi
7.    VOLUME RUANG BAKAR
Isi ruang antara kepala silinder dan piston pada saat piston berada di TMA.
8.    VOLUME SILINDER
Adalah penjumlahan antara piston displacement ditambahkan volume ruang bakar.
9.    PERBANDINGAN KOMPRESI
Nilai yang ditunjukkan dari hasil pembagian volume silinder dengan volume ruang bakar. Dinyatakan dengan rumusan
RK = Volume Silinder / Volume ruang bakar
Perbandingan kompresi tinggi dimaksudkan untuk penggunaan mesin pada performa dan kecepatan tinggi, tetapi ada batasan-batasan tertentu pada perbandingan kompresi.
10.    KECEPATAN PISTON
Pergerakan piston dari TMA-TMB tentu memiliki kecepatan , tepat dititik TMA  – TMB kecepatan piston adalah nol dan tervepat di tengah-tengah langkah. Oleh karena itu kecepatan piston ditunjukkan oleh kecepatan rata-rata.
Speed = LN / 30
L = Panjang langkah
N = Putaran Mesin (RPM)
Piston SPEED
11.    KARAKTER MESIN
Dalam komposisi displacement mesin yang sama, tiap mesin memiliki karakter yang berbeda-beda, tergantung dari  besaran diameter piston dan panjang langkah.
-    Mesin OverBore …. Langkah lebih kecil daripada diameter piston.
-    Mesin Square… Langkah dan diameter piston sama.
-    Mesin OverStroke… Langkah lebih besar daripada diameter piston.
Dibanding dengan mesin langkah panjang dan square , mesin over bore lebih mudah untuk membuat kecepatan mesin dan tenaga yang dihasilkan bisa lebih besar. Jika kecepatan mesin rata, kecepatan piston dapat dibuat lebih rendah juga hambatan gesek dapat dikurangi. Desain mesin lebih kompak, pada mesin balap desain mesin ini lebih sering unggul. Oleh karenanya modifikasi BORE UP , atau memperbesar diameter piston lebih mudah menciptakan kecepatan dan tenaga dibandingkan STROKE UP.

SUMBER : R.A.T MOTORSPORT

TORSI dan TENAGA !!!

Crankshaft n Piston Motion
TORSI DAN TENAGA
Torsi adalah gaya tekan putar pada bagian yang berotasi. Sepeda motor digerakkan oleh torsi yang dihasilkan kruk as. Torsi dapat dihitung melalui rumus
T = Gaya x Jarak

Jika gaya F (kg) dikerjakan untuk memutar benda sepanjang R (m) , untuk mengencangkan baut missal, maka torsi yang digunakan adalah F.R (Kg m), sebagaimana perubahan torsi dari reduksi primer antara gigi primary kruk as dengan gigi sekunder house kopling, tersalurkan ke gigi primer transmisi pada gigi sekunder transmisi, kemudian tersambung pada gigi primer final gir diteruskan melalui rantai pada gigi sekunder final gir hingga mampu memutra roda belakang.
Jika sebuah torsi F bekerja pada roda gigi A dengan radius r, berhubungan dengan roda gigi B dengan radius 2r, torsi pada roda gigi  B semakin besar meski kecepatan putar berkurang menjadi separuhnya.
Didalam mesin!!!

Panjang langkah piston adalah dua kali jarak pusat crankshaft ke big end (crank pin), Ledakan menghasilkan gaya tekan piston untuk mendorong piston kebawah hingga kemudian memutar kruk as. Oleh karenanya Torsi pada mesin akan berubah sesuai dengan besarnya gaya yang dihasilkan (F) selama jarak tetap. Besaran gaya F akan berubah sesuai kecepatan mesin, ini berarti dipengaruhi oleh efisiensi pembakaran, hal ini turut merubah besaran Torsi.
Torsi Meter Digital
Kenyataannya kinerja mesin pun memiliki titik jenuh, pada kecepatan spesifik, torsi memuncak (Torsi Maximum). Tapi kenanikan kecepatan mesin selanjutnya tidak akan menaikkan torsi.
Ketika motor bekerja pada putaran Torsi maksimum maka gaya gerak roda belakang juga berputar maksimum.
Bagaimana memperbesar Torsi, ada dua cara : memperbesar ledakan yang dihasilkan mesin hingga mampu mendorong piston lebih cepat, atau memperpanjang langkah piston.
TENAGA

Kinerja rata-rata diukur berdasarkan waktu. Torsi kruk as menggerakkan sepeda motor, tapi ini hanya gaya untuk menggerakan sedang kecepatan sepeda motor tidak diperhitungkan. Tenaga adalah kerja yang dapat menimbulkan kecepatan.
Tenaga = Kerja / Waktu. Kg,m /sec
Satuan tenaga dinyatakan dalam PS (Pferd Starke –JERMAN) atau 75 kg.m / sec , artinya tenaga ini mampu menggerakkan objeck dengan massa seberat 75 kg sejauh 1 meter dalam satu second, makin besar kemampuan mesin menggerakkan benda dalam satuan waktu, maka dapat diartikan semakin besar tenaga yang dihasilkan. Semakin berat total kendaraan dan pengendara, maka membutuhkan tenaga lebih besar pula untuk mencapai kecepatan yang sama.
Pembangkit torsi besar
Tenaga pada crankshaft dapat diukur dengan rumusan,
Q = 0,0014 NT
Dimana  N, adalah putaran mesin, dan T adalah Torsi.  Tenaga yang dihasilkan mesin akan berubah-ubah tergantung dari torsi yang dihasilkan menurut kecepatan mesin, makin tinggi kecepatan mesin, makin besar tenaga. Oleh karena itu pada kecepatan tertentu, torsi mulai menurun.
Ketika tenaga mencapai Maksimum, ini dinamakan “ Tenaga Maksimum “ dan pada suatu titik akan mencapai puncak titik kelelahan hingga akhirnya putaran mesin tidak lagi mampu menaikkan tenaga.

SUMBER : R.A.T MOTORSPORT

PORT POLISHED SECRET

PORT POLISHED HISTORY
Fokus porting pada Intake port bukan hanya pada membesarkan, tapi merapihkan bentuk dasar dengan luasan mengikuti 85 % diameter klep in sehingga bahan bakar tetap padat saat masuk ke dalam silinder, dan menggembungkan port di samping bos klep, area mangkok klep, bertujuan menjadikan campuran udara bahan bakar lebih homogen dan air flow tinggi. Sifat udara tidak menyukai lekukan yang terlalu tajam, karena itu kontur porting dibuat memiliki kelokan lembut, dari sini diharapkan terciptanya SWIRL masuk ke dalam silinder.
Exhaust port kita bentuk D-Shaped + Full high polished biar kerak gak gampang ngendap dan flow keluar jadi lebih lancar… Mangstaabb…
Pada sisi exhaust diperlukan penggeseran porting mengikuti kontur terdorongnya gas buang dari silinder menuju leher knalpot. Usahakan pertemuan antara lubang porting dengan lubang knalpot match, dan arah pembuangannya selaras. D-Shaped exhaust port dipercaya Graham Bell sebagai evolusi kontur porting yang paling efisien. Bisa dilihat pada porting motor BAJAJ PULSAR.
Polished diperlukan pada sisi ini agar kerak arang atau sisa karbon pembakaran tidak lekas menempel di area porting dan mengganggu flow.
—————————————————————————————————————————————–
Hi-Velocity for SIAMESED PORT
Hi-Velocity for SIAMESED PORT
Ini adalah cara tuning kepala silinder ala MOTOTUNE USA, yang dipelopori oleh pemikiran luar biasa Motoman. Penyempurnaan porting tidak selalu membesarkan lubang pemasukan campuran udara/bahan-bakar. Motoman melawan logika alat ukur FLOWBENCH yang biasa digunakan untuk mengembangkan sebuah geometri porting, dalam buku petunjuk Flowbench dikatakan setiap peningkatan CFM ( jumlah udara yang mengalir dalam setiap menit) maka akan terdapat peningkatan tenaga kuda. Yang logikanya : Jika kamu mau aliran air yang banyak maka besarkan saja ukuran selangnya, dan ada yang salah sepertinya dengan logika itu. :)
Oleh karenanya Motoman mengambil halauan “KIRI” , porting tidak lagi ia besarkan, justru ia modifikasi dengan menyempitkan Area porting hingga 30 %. Menurut penelitiannya ada beberapa area yang ternyata tidak terlewati oleh aliran udara, sehingga dirasa justru tidak efektif membesarkan porting. Dan dia mengkreasikan porting dengan cara sendiri.
—————————————————————————————————————————————–
Beda lagi dengan porting dengan geometri berbentuk persegi, kemungkinan cara membentuk porting yang sesuai adalah menghitung konfersi dari nilai luasan area porting ke dalam bentuk lingkaran, sehingga kita dapat mengukur luasan efisiensi porting yang ingin dikejar.



SP_A2060

SUMBER : R.A.T MOTORSPORT

Tips & Trik Korek Harian Mesin Motor 4 Tak

Roh utama korek mesin 4 tak terdapat di kepala silinder, cylinder head, kop, dexel, atau apa lah kita menyebutnya, yang pasti graham bell menggapai kesimpulan dari risetnya bahwa “Takkan ada satupun mesin 4 tak dapat menghasilkan tenaga dengan baik apabila ia tidak memiliki kemampuan untuk mengalirkan udara dengan baik pula”. Inilah yang namanya efisiensi volumetrik. Apakah peningkatan efisiensi volumetrik hanya dapat dicapai dengan melakukan port-polished? Tentu tidak. Banyak cara lain, riset membuktikan bahwa melepas filter udara karburator itu saja sudah menambah debit aliran udara yang masuk dan tenaga di rpm menengah – atas terjadi penambahan. Namun ada salah satu cara mudah dan pasti yaitu : Meningkatkan rasio kompresi.
Mesin modern biasanya dibuat dengan desain yang lebih kompak, dengan material lebih bagus dan daya tahan tinggi, sehingga saat ini dapat dipacu dengan perbandingan kompresi hingga 13 : 1 tentu pemilihan bahan bakar harus lebih baik, seperti Pertamax, atau pertamax plus, toh kini sudah banyak SPBU Shell, yang kualitas bahan-bakarnya memiliki oktan lebih tinggi dari Pertamax Plus. Pemakaian material piston dan connecting rod dituntuk untuk harus lebih baik demi daya tahan mesin. Kalau mekaniknya hebat pencapaian kompresi itu tak harus banyak main papas / bubut, salah-salah jika terlalu percaya pada tukang bubut yang kita belum tahu kapasitasnya, melenceng sedikit saja justru kebocoran kompresi dapat terjadi. Bukankah melepas paking blok silinder itu juga sudah sama dengan memapas 0.5 milimeter, nggak pake bayar lagi, dan pasti presisi.

Ada lagi cara lain, penambahan kapasitas silinder bisa dilakukan untuk mengakali kompresi. Misal, mesin standard jupiter z, dengan kapasitas 110 cm3, perbandingan kompresi 9 : 1, ketika kita mengganti piston sehingga kapasitasnya melonjak menjadi 125  cm3, ternyata bisa dimanfaatkan untuk meningkatkan kompresi sehingga menggapai perbandingan 10 : 1, itu kalau kondisi piston FLAT, alias datar. Kalau piston Dome? Derajat squish pada piston disamakan dengan squish di cylinder head, dan jenong diatur ulang sedemikian rupa sehingga perbandingan dapat tercapai 13 : 1. Oh, betapa mantapnya… Tanpa papas head & blok pula… Tetap presisi, tetap aman jaya!
Apa manfaat dari menaikkan rasio kompresi? Tentu dengan daya hisap lebih kuat , aliran udara lebih lega masuk ke dalam silinder, semakin banyak yang dihisap, dipadatkan di ruang yang semakin sempit, BUMMM… ingat rumus torsi.. hmmm… torsi pun berkaitan dengan tenaga, daya lenting kruk as menjadi lebih dahsyat. Dan dengan peningkatan rasio kompresi biasanya didapatkan peningkatan tenaga yang lebih merata mulai dari akselerasi hingga top speed.
Apa manfaat bore up, menambah kapasitas mesin secara mengganti piston dengan dimensi lebih besar? Percobaan guru Graham Bell  diatas mesin dynotest pada mesin balap mobil yang dipakai untuk Reli, penambahan 15 % kapasitas mesin misalnya, tidak serta merta meningkatkan tenaga mesin sebanyak 15 % pula, mungkin tidak sampai 10 % tapi keuntungan yang kita dapat adalah puncak tenaga itu bisa kita gapai di RPM yang lebih rendah, artinya dari putaran bawah mesin sudah lebih bertenaga, dan kita tidak perlu memelintir gas terlalu banyak untuk mencapai kecepatan yang sama seperti sebelumnya! Hasilnya : Modifikasi mesin menjadikan lebih hemat BBM ( lebih irit ) tapi juga lebih kencang, syukur alhamdulillah to.. Pula mesin irit = emisi gas buang rendah berarti kita tetap menyayangi lingkungan. Tidak egois kan? Sedap…
Modif rapi jali...
Modifikasi porting..? Hmmm… sudah banyak saya jabarkan rahasia porting, saran saya jika tidak ada alat memadai jangan terlalu berani dalam memodifikasi porting, menghaluskan dengan kertas gosok / grit / amplas , adalah tindakan lebih bijak ketimbang terlalu lebar membuka porting dengan segala akibat buruknya, karena aliran udara itu bermuatan bahan bakar, dan efisiensi volumetris terdiri bukan hanya dari jumlah yang dapat dimasukkan tapi pula seberapa cepat aliran udara dapat dimasukkan. Perhitungan ulang berdasarkan Stroke, Diameter piston, Diameter klep yang dipakai akan tetap berlaku bagi mesin apapun. Perubahan pada salah satu faktor akan mempengaruhi mekanisme lainnya, karena itulah dinamakan sebuah MESIN.
Perlu diingat pula penyelarasan antara karburator – intake manifold – dengan lubang porting masuk, pula lubang porting buang dengan leher knalpot, itu adalah hal vital. Penentuan puncak tenaga, karakter mesin, semua bisa berasal dari konfigurasi dan geometri porting, jika tidak memiliki perhitungan mendalam serta keyakinan kata hati bahwa hasil porting akan membawa mesin ke jenjang performa lebih baik, tetaplah pada pilihan bijak untuk mempertahankan geometri porting standard, karena desain porting insinyur jepang pasti telah mempertimbangkan segala aspek aliran udara, bahkan mungkin itu desain swirl (aliran kelokan udara) yang kadang tidak kita perhatikan. Jika kata hati berkata kita bisa, dan cylinder head toh sekarang murah meriah, dan ingin belajar lebih maju dengan didukung alat yang memadai maka : HAJAR BLEH… hahahhaha… asal jangan motor konsumen dibuat coba-coba, tega amat… ^_^
Modifikasi noken as di motor harian sah-sah saja, boleh, apalagi pegas klep performa tinggi sekarang sudah tersedia banyak di pasaran, bisa juga aplikasi memakai pegas klep dari motor lain yang dianggap bagus. Jika masih ingin mempertahankan pegas klep standardnya, maka pemapasan yang bijak adalah penambahan sedikit lifter dan durasi tidak lebih dari 0.5 milimeter, ingat : Cam durasi sedang dengan lift pas-pas an akan lebih baik daripada cam dengan durasi terlalu lebar dan lift terlalu tinggi.
Noken as ini juga mempengaruhi aliran udara ke dalam silinder, ingat efek angkatan klep ( valve lift ) ke volumetrik effisiensi. Bahwasanya ternyata angkatan klep yang efisien itu cuma 27 % dari diameter klep inlet bawaan motornya lho… Tidak perlu menggapai 30 % atau bahkan lebih jika masih ingin dipakai harian. Misal, motor suzuki shogun 125, dengan klep inlet 25 milimeter, maka angkatan klep optimal berada di kisaran 6.75 milimeter, dibagi rocker arm ratio, mungkin hanya diperlukan lobe lift setinggi 5.6 milimeter. Ga tinggi-tinggi banget kan?! Pir klep bagus seperti pir klep swedia yang ringan dan renggang dapat dipakai, atau yang sudah kondang seperti pir klep akutagawa jepang, tidak haram untuk dipakai harian. Dijamin mesin tidak mudah jebol, karena pir tidak telat mengembalikan klep pada kedudukannya, utamanya klep api yang rawan patah tertabrak piston saat overlaping. Kemudian menentukan durasi, saya sarankan untuk cam harian durasi yang dipakai tidak lebih dari 290 derajat, dengan durasi 1 milimeter berada tidak lebih dari 255 derajat. Bagaimana cara cepat menyulap noken as standard menjadi lebih tinggi liftnya dan durasinya lebih lebar seperti yang kita mau? Order aja modul cara mudah papas noken as yang udah diterbitkan oleh R.A.T hehehe… murah kok, dan bisa mendatangkan banyak duit tuh :D
CDI Performa Tinggi
Lanjut… syarat mesin pembakaran dalam ( internal combustion chamber ) dapat berprestasi adalah : adanya kompresi, bahan-bakar yang baik, serta pengapian. Peningkatan kompresi sudah, bahan bakar yang bagus sudah dipakai, aliran udara sudah meningkat banyak dengan pangkasan kem dan halusin porting. Tinggal pengapian, pilihan otak pengapian digital sekarang semakin banyak, bagaimana kita bijak menentukan yang sesuai kebutuhan dan kantong menjadikan modifikasi tidak mubadzir. Rextor adjustable, ataupun BRT Dual Band bisa menjadi pilihan awal untuk meningkatkan banyak performa mesin motor di sektor pengapian! Gampang, murah-meriah, tinggal colok, dan gassss!!! Jika mekanik dirasa mampu menset-up pengapian ke level yang lebih tinggi , pilihan bisa diaplikasikan ke CDI Programable, dimana timing pengapian pada putaran mesin tertentu serta batasan kitiran kruk as bisa disetel semua. Namun resiko-nya, salah seting, pengapian terlalu maju, limiter terlalu tinggi, mesin riskan jebol. Jadi konsultasi dan sharing terlebih dahulu ke bengkel yang akan diserahin tanggung jawab adalah mutlak perlu. Otak pengapian sudah diupgrade, tinggal pelipat ganda arus alias Coil di ganti pula dengan yang lebih bagus, pilihan biasanya banyak jatuh ke coil yang memang sudah dipakai balap di motor kelas dunia ( Special Engine ) seperti Yamaha YZ 125, atau SUZUKI RM, itu adalah pilihan koil yang paten dan pasti, jika belum cukup dana atau merasa sayang mending pakai koil standardnya saja. Lebih hemat toh… :) Pengapian yang sempurna membakar bahan-bakar yang sudah dihisap masuk akan menghasilkan pembakaran dan efisiensi kalor , berarti pula penambahan tenaga + irit bahan bakar, tak heran motor modifikasi menjadi semakin kencang dan tetap irit selama korekan dilakukan dengan benar.
Trik-trik lain seperti reduksi magnit, dan balancer , serta pemakaian kampas kopling dan pir kopling yang lebih baik dapat dilakukan untuk menambah efisiensi penyaluran tenaga dari kruk as menuju roda. Seting final gir, untuk perkotaan bisa menukar gir belakang dengan jumlah 1 angka lebih besar misalnya dari 35 ke 36. Setelah ubahan penambahan kapasitas mesin sebanyak kurang lebih 15 % jangan takut mesin lantas menjadi hanya kuat di akselerasi tapi top speed akan turun, justru top speed bisa bertambah karena kekuatan mesin sudah meningkat. Untuk pemakaian jarak tempuh lebih jauh, gir belakang bisa diturunkan satu mata. Konsekwensinya top speed akan terdongkrak, dan penggapaian top speed tetap terjaga di RPM yang rendah demi keawetan mesin yang dipaksa teriak terus menerus. Kenapa gir belakang yang dipilih? Karena perhitungan torsi antara mesin dan gir depan memiliki perubahan terlalu signifikan dibanding perbandingan traksi antara diameter roda belakang terhadap gir belakang.

Untuk modifikasi yang tidak terlampau banyak ubahan masih dapat memanfaatkan knalpot standardnya. Atau jika berminat memakai knalpot buatan pengrajin knalpot bisa memesan yang sudah disesuaikan karakter mesin / modifikasi spec terbaru. Pilihan lain bisa jatuh pada knalpot aftermarket yang banyak dijual di pasaran, mulai dari import thailand atau malaysia, kalau saran saya sih tetap cintai produk dalam negeri dan kasih aja rejeki ke pengrajin knalpot lokal, itung-itung turut beramal mensejahterakan kehidupan mereka

SUMBER : R.A.T MOTORSPORT INDONESIA

MENGENALI CARA KRJA MESIN 4TAK !!

Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).
Empat proses tersebut terbagi dalam siklus :
Langkah hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke dalam silinder.  Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.
Prosesnya adalah ;
  1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
  2. Klep inlet terbuka, bahan bakar masuk ke silinder
  3. Kruk As berputar 180 derajat
  4. Noken As berputar 90 derajat
  5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder.
LANGKAH KOMPRESI
Dimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.
Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.
Prosesnya sebagai berikut :
  1. Piston bergerak kembali dari TMB ke TMA
  2. Klep In menutup, Klep Ex tetap tertutup
  3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
  4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
  5. Kruk as mencapai satu rotasi penuh (360 derajat)
  6. Noken as mencapai 180 derajat
LANGKAH TENAGA
Dimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.
Prosesnya sebagai berikut :
  1. Ledakan tercipta secara sempurna di ruang bakar
  2. Piston terlempar dari TMA menuju TMB
  3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
  4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
  5. Putaran Kruk As mencapai 540 derajat
  6. Putaran Noken As 270 derajat
LANGKAH BUANG
Langkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.
Prosesnya adalah :
  1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
  2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
  3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
  4. Kruk as melakukan 2 rotasi penuh (720 derajat)
  5. Noken as menyelesaikan 1 rotasi penuh (360 derajat)
FINISHING PENTING — OVERLAPING
Overlap adalah sebuah kondisi dimana kedua klep intake dan out berada dalam possisi sedikit terbuka pada akhir langkah buang hingga awal langkah hisap.
Berfungsi untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan dari kinerja mekanis klep dan inersia udara di dalam manifold, maka sangat diperlukan untuk mulai membuka klep masuk sebelum piston mencapai TMA di akhir langkah buang untuk mempersiapkan langkah hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran, klep buang tetap terbuka hingga setelah TMA. Derajat overlaping sangat tergantung dari desain mesin dan seberapa cepat mesin ini ingin bekerja.
manfaat dari proses overlaping :
  1. Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran
  2. Pendinginan suhu di ruang bakar
  3. Membantu exhasut scavanging (pelepasan gas buang)
  4. memaksimalkan proses pemasukkan bahan-bakar
crankcase and boring supra D.O.T Engine Performance in progress..!!